Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37725739

RESUMO

Lower back injuries are the most common work-related musculoskeletal disorders. As a wearable device, a back-support exoskeleton (BSE) can reduce the risk of lower back injuries and passive BSEs can achieve a low device weight. However, with current passive BSEs, there is a problem that the user must push against the device when lifting the leg to walk, which is perceived as particularly uncomfortable due to the resistance. To solve this problem, we propose a novel passive BSE that can automatically distinguish between lifting and walking. A unique spring-cable-differential acts as a torque generator to drive both hip joints, providing adequate assistive torque during lifting and low resistance during walking. The optimization of parameters can accommodate the asymmetry of human gait. In addition, the assistive torque on both sides of the user is always the same to ensure the balance of forces. By using a cable to transmit the spring force, we placed the torque generator on the person's back to reduce the weight on the legs. To test the effectiveness of the device, we performed a series of simulated lifting tasks and walking trials. When lifting a load of 10 kg in a squatting and stooping position, the device was able to reduce the activation of the erector spinae muscles by up to 41%. No significant change in the activation of the leg and back muscles was detected during walking.


Assuntos
Lesões nas Costas , Exoesqueleto Energizado , Humanos , Remoção , Marcha , Articulação do Quadril
2.
Wearable Technol ; 4: e7, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38487772

RESUMO

Shoulder exoskeletons (SEs) can assist the shoulder joint of workers during overhead work and are usually passive for good portability. However, current passive SEs face the challenge that their torque generators are often attached to the human arm, which adds a significant amount of weight to the user's arms, resulting in additional energy consumption of the user. In this paper, we present a novel passive SE whose torque generator is attached to the user's back and assists the shoulder joint through Bowden cables. Our approach greatly reduces the weight on the user's arms and can accommodate complex shoulder joint movements with simple and lightweight mechanical structure based on Bowden cables. In addition, to match the nonlinear torque requirements of the shoulder joint, a unique spring-cam mechanism is proposed as the torque generator. To verify the effectiveness of the device, we conducted a usability test based on muscle activations of 10 healthy subjects. When assisting overhead work, the SE significantly reduced the mean and maximum electromyography signals of the shoulder-related muscles by up to 25%. The proposed SE contributes to further research on passive SE design to improve usability, especially in terms of reducing weight on human arms.

3.
IEEE J Biomed Health Inform ; 26(4): 1749-1760, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34410932

RESUMO

OBJECTIVE: Accurate real-time estimation of motion intent is critical for rendering useful assistance using wearable robotic prosthetic and exoskeleton devices during user-initiated motions. We aim to evaluate hierarchical classification as a strategy for real-time locomotion mode recognition for the control of wearable robotic prostheses and exoskeletons during user-initiated motions. METHODS: We collect motion data from 8 subjects using a set of 7 inertial sensors for 16 lower limb locomotion modes of different specificities. A CNN based hierarchical classifier is trained to classify the modes into a specified label hierarchy. We measure the accuracy, stability, behaviour during mode transitions and suitability for real-time inference of the classifier. RESULTS: The method achieves stable classification of locomotion modes using [Formula: see text] of time history data. It achieves average classification accuracy of 94.34% and an average AU(PRC) of 0.773 - comparable to similar classifiers. The method produces more informative classifications at transitions between modes. Less specific classes are classified earlier than more specific classes in the hierarchy. The inference step of the classifier can be executed in less than 2 ms on embedded hardware, indicating suitability for real-time operation. CONCLUSION: Hierarchical classification can achieve accurate detection of locomotion modes and can break up mode transitions into multiple transitions between modes of different specificity. SIGNIFICANCE: Multi-specific hierarchical classification of locomotion modes could lead to smoother, more fine grained control adaptation of wearable robots during locomotion mode transitions.


Assuntos
Membros Artificiais , Exoesqueleto Energizado , Robótica , Humanos , Locomoção , Fatores de Tempo , Caminhada
4.
IEEE Int Conf Rehabil Robot ; 2019: 694-700, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374712

RESUMO

We present a novel control method for an omnidirectional robotic platform for gait training. This mobile platform or "walker" provides trunk support and allows unrestricted motion of the pelvis simultaneously. In addition to helping the user maintain balance and preventing falls, the walker combines two types of therapeutic intervention: forward propulsion of the trunk and partial body weight support (BWS). The core of the walker's control is an admittance controller that maximizes the platform's horizontal mobility by optimizing the virtual mass of the admittance model. Said mass represents the best tradeoff between a low-frequency oscillation mode that becomes more damped as the virtual mass decreases, and a high-frequency mode that becomes less damped simultaneously and hence could destabilize the system. Forward propulsion of the trunk is aided by a horizontal force that is modulated with the patient's gait speed and turning rate to ensure easy adaptation. BWS is provided by a second, independent admittance controller that generates a spring-like upward force. In an initial study, a stroke patient was able to walk stably in the platform, as evidenced by the absence of oscillations associated with an excessively low virtual mass. A progressive increase in the patient's self-selected speed, along with greater uniformity in the instantaneous velocity, suggest that forward propulsion was effective in compensating the patient's own propulsion deficit.


Assuntos
Marcha/fisiologia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Peso Corporal , Doença Crônica , Retroalimentação , Feminino , Humanos , Modelos Lineares , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...